Breakthrough in brown fat research
Researchers from the University of Southern Denmark, the Novo Nordisk Center for Adipocyte Signaling (SDU), the University of Bonn and the University Hospital Bonn (UKB) have found a protein that is responsible for turning off brown fat activity. This new discovery could lead to a promising strategy for safely activating brown fat and tackling obesity and related health problems. The results of the study have now been published in the journal „Nature Metabolism“.
Malfunction in spermatogenesis
For successful fertilization, sperm should move forward rapidly and be shaped correctly. The unique structure of the sperm cells forms during spermiogenesis. Now, researchers from the University Hospital Bonn (UKB) and the Transdisciplinary Research Unit "Life & Health" at the University of Bonn have found that fertility problems in both mice and humans can be caused by loss of so-called cylicines. This causes defects in head and tail structure of sperm. The results of the study have now been published in the scientific journal "eLife".
New findings on hair loss in men
A receding hairline, a total loss of hair from the crown, and ultimately, the classical horseshoe-shaped pattern of baldness: Previous research into male pattern hair loss, also termed androgenetic alopecia, has implicated multiple common genetic variants. Human geneticists from the University Hospital of Bonn (UKB) and by the Transdisciplinary Research Unit “Life & Health” of the University of Bonn have now performed a systematic investigation of the extent to which rare genetic variants may also contribute to this disorder. For this purpose, they analyzed the genetic sequences of 72,469 male participants from the UK Biobank project. The analyses identified five significantly associated genes, and further corroborated genes implicated in previous research. The results have now been published in the prestigious scientific journal Nature Communications.
Researchers at the University of Bonn discover mechanism that leads to ANCA-associated vasculiti
Our own immune system can become the enemy when mechanisms that are actually protective get out of control. In ANCA-associated vasculitis, excessive inflammatory reactions lead to pulmonary hemorrhages that can be fatal if left untreated. Researchers at the University of Bonn, together with colleagues from Germany, the Netherlands, Switzerland and England, have deciphered a mechanism in mice and patients that leads to the severe disease. The results are now published in the Journal of Experimental Medicine.
Study: Bacterial membrane transporter helps pathogens to hide from immune system
The transport of substances across the membrane into the cell is linked to specific membrane transport proteins. Researchers at the University Hospital Bonn (UKB) and the University of Bonn, in collaboration with an international team, have now succeeded in elucidating the molecular structure of a completely new class of such membrane transporters. In addition to the Bonn scientists, researchers from the University of York were also involved. The study has now been published in the journal Nature Communications.
Study in Science: Combination of two molecules simultaneously attacks multiple sites on the surface of the virus
An international research team led by the University of Bonn has identified and further developed novel antibody fragments against the SARS coronavirus-2. These “nanobodies” are much smaller than the classic antibodies, for example. They therefore penetrate the tissue better and can be produced more easily in larger quantities. The researchers at the University Hospital Bonn have also combined the nanobodies into potentially particularly effective molecules. These attack different parts of the virus simultaneously. The approach could prevent the pathogen from evading the active agent through mutations. The results are published in the journal Science.
Dowling-Degos disease is a hereditary pigmentation disorder that generally progresses harmlessly.
Dowling-Degos disease is a hereditary pigmentation disorder that generally progresses harmlessly. However, some of those affected also develop severe skin inflammation. 
Jonathan Schmid-Burgk and colleagues present new data on the identification of NEK7
The mechanisms of NLRP3 activation are still poorly understood. Jonathan Schmid-Burgk and colleagues present new data on the identification of NEK7, which specifically functions upstream of NLRP3 activation. NEK7 was identified in an unbiased genetic screening approach, which employed the CRISPR technology to identify macrophages that were rendered defective in NLRP3 signal transduction.
Wird geladen