22. April 2022

Enzyme prevents brain activity from getting out of control Enzyme prevents brain activity from getting out of control

Mechanism identified at University of Bonn alters the coupling of nerve cells

The brain has the ability to modify the contacts between neurons. Among other things, that is how it prevents brain activity from getting out of control. Researchers from the University Hospital Bonn, together with a team from Australia, have identified a mechanism that plays an important role in this. In cultured cells, this mechanism alters the synaptic coupling of neurons and thus stimulus transmission and processing. If it is disrupted, diseases such as epilepsy, schizophrenia or autism may be the result. The findings are published in the journal Cell Reports.

Study authors Prof. Dr. Susanne Schoch and Prof. Dr. Dirk Dietrich from the University Hospital Bonn
Study authors Prof. Dr. Susanne Schoch and Prof. Dr. Dirk Dietrich from the University Hospital Bonn © Barbara Frommann, Uni Bonn
Download all images in original size The impression in connection with the service is free, while the image specified author is mentioned.
Please fill out this field using the example format provided in the placeholder.
The phone number will be handled in accordance with GDPR.

The brain has the ability to modify the contacts between neurons. Among other things, that is how it prevents brain activity from getting out of control. Researchers from the University Hospital Bonn, together with a team from Australia, have identified a mechanism that plays an important role in this. In cultured cells, this mechanism alters the synaptic coupling of neurons and thus stimulus transmission and processing. If it is disrupted, diseases such as epilepsy, schizophrenia or autism may be the result. The findings are published in the journal Cell Reports.

Almost 100 billion nerve cells perform their service in the human brain. Each of these has an average of 1,000 contacts with other neurons. At these so-called synapses, information is passed on between the nerve cells.

However, synapses are much more than simple wiring. This can already be seen in their structure: They consist of a kind of transmitter device, the presynapse, and a receiver structure, the postsynapse. Between them lies the synaptic cleft. This is actually very narrow. Nevertheless, it prevents the electrical impulses from being easily transmitted. Instead, the neurons in a sense shout their information to each other across the gap.

For this purpose, the presynapse is triggered by incoming voltage pulses to release certain neurotransmitters. These cross the synaptic cleft and dock to specific “antennae” on the postsynaptic side. This causes them to also trigger electrical pulses in the receiver cell. “However, the […]

The authors acknowledge the support from the Microscopy, Mass Spectrometry, and Virus Core Facilities at the Medical Faculty

Johannes Alexander Müller, Julia Betzin, Jorge Santos-Tejedor, Annika Mayer, Ana-Maria Oprişoreanu, Kasper Engholm-Keller, Isabelle Paulußen, Polina Gulakova, Terrence Daniel McGovern, Lena Johanna Gschossman, Eva Schönhense, Jesse R. Wark, Alf Lamprecht, Albert J. Becker, Ashley J. Waardenberg, Mark E. Graham, Dirk Dietrich, Susanne Schoch: A presynaptic phosphosignaling hub for lasting homeostatic plasticity; Cell Reports; DOI: https://doi.org/10.1016/j.celrep.2022.110696

Prof. Dr. Susanne Schoch McGovern
Section for Translational Epilepsy Research
Department of Neuropathology
University Hospital Bonn
Phone: +49 228 28719109
Email: susanne.schoch@uni-bonn.de

Prof. Dr. Dirk Dietrich
Section for Translational Epilepsy Research
Department of Neuropathology
University Hospital Bonn
Phone: +49 228 287 19224
Email: dirk.dietrich@uni-bonn.de

Wird geladen